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Abstract
The properties of the wave equation are studied in the case of energy-dependent
potentials for bound sates. The nonlinearity induced by the energy dependence
requires modification of the standard rules of quantum mechanics. These
modifications are briefly recalled. Analytical and numerical solutions are
given in the three-dimensional space for power-law radial shape potentials
with a linear energy dependence. This last is chosen since it allows the
construction of a coherent theory. Among the results, we stress the saturation
of the spectrum observed for confining potentials: as the quantum numbers
increase, the eigenvalues reach an upper limit. Finally, the problem of the
equivalent local potential is discussed. The existence of analytical solutions
presents a good opportunity to tackle this problem in detail.

PACS numbers: 12.40−y, 11.10.St, 03.65.Ge

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Wave equations with energy-dependent potentials have been known in physics for a long time.
They occur in relativistic quantum mechanics, first with the Pauli–Schrödinger equation [1].
Recently, they appear in the Hamiltonian formulation of the relativistic many-body problem
in connection with the manifestly covariant formalism with constraints [2–4]. They also play
a role in non-relativistic physics offering the possibility of studing nonlinear effects in the
framework of the Schrödinger equation. Energy-dependent potentials have been used as a
source of nonlinear Hamiltonian evolution equations [5–8]. They are currently applied to
soliton propagation [9–11]. However, to our knowledge, the case for bound states has retained
little attention.

In a recent paper, the properties of the wave equations with an energy-dependent potential
were investigated, together with the necessary conditions to be imposed for such a theory to
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be coherent [12]. This paper gives the solutions for the harmonic oscillator in one dimension.
Extensions to the three-dimensional space were presented in [13], in connection with the heavy
charmonia and bottomia spectra.

The present work is devoted to potentials with power-law radial shapes in the three-
dimensional space, for which analytical solutions exist in few cases. The energy dependence
is chosen to be linear. In fact, the energy dependence is not given by general principles. It
should be derived from the underlying theory. Thus, fixing the energy dependence a priori is
arbitrary. The choice of a linear dependence is motivated by the fact that in this case it can be
shown to lead us to a coherent theory [12].

The study of power-law potentials offers the possibility of dealing with the question of
the local equivalent potential. It has been shown by Formanek et al [12] that in the case of a
linear dependence, the problem can be reformulated as an ordinary Schrödinger equation with
a non-local potential3. The existence of analytical solutions provides a good opportunity to
investigate the question of the local equivalent potential. As far as we know, this problem has
not yet been discussed in detail in the case of bound states.

The paper is organized as follows. In section 2, we shall recall the basic aspects of
the wave equation with energy-dependent potentials. Solutions will be given for power-law
potentials in section 3, together with a study of the saturation effect: for potentials with a
confining radial shape, the eigenvalues reach an upper limit as the quantum numbers increase.
The question of equivalent local potential is the subject of section 4. Conclusions are drawn
in section 5.

2. The wave equation

The presence of an energy-dependent contribution in the potential has several implications
modifying the usual rules of quantum mechanics. They reflect the nonlinearity of the problem
and are necessary to establish a coherent theory. Most of them are well known. Derivations
can be found in previous works.

Many authors have noted that the density probability, or the scalar product, has to be
modified with respect to the usual definition, in order to satisfy the continuity equation
[14, 15]. It is easy to show that the continuity equation is satisfied if the density is defined by

ρ(�r, t) = �∗(�r, t)
[

1 − V (�r, E′) − V (�r, E)

E′ − E

]
�(�r, t). (1)

Accordingly, the scalar product is written as

(�|�〉 =
∫

�∗(�r)
[

1 − V (�r, E′) − V (�r, E)

E′ − E

]
�(�r) d�r. (2)

The use of (·|·〉 is made here to distinguish the new scalar product from the usual form 〈·|·〉.
As E′ → E, the wavefunction �(�r) → �(�r), and the norm is given by

(�|�〉 =
∫

�∗(�r)
[

1 − ∂V (�r, E)

∂E

]
�(�r) d�r. (3)

We note that for ρ(�r) = �∗(�r)�(�r) to represent a density, it has to be positive definite. This
is ensured if and only if[

1 − ∂V (�r, E)

∂E

]
> 0. (4)

3 Strictly speaking, a non-local potential depends on two space variables. For the sake of simplifying the language,
V (�r, �p) and V (�r, E) will be quoted as non-local potentials on the ground that they depend on momentum or energy
besides a single space variable.
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Consider two eigenfunctions �i(�r) and �j(�r) with the eigenvalues Ei and Ej, respectively.
The orthonormality relation is written as

(�i |�j 〉 =
∫

�∗
i (�r)[1 − ϕij (�r)]�j(�r) d�r = δij , (5)

with

ϕij (�r) = V (�r, Ei) − V (�r, Ej )

Ei − Ej

i �= j, (6)

and

ϕii(�r) = ∂V (�r, E)

∂E
. (7)

As stated in the introduction, the energy dependence is not dictated by general principles but
it should be derived from the underlying theory. On the other hand, a linear dependence has
interesting properties: it produces a coherent theory, and it can be reformulated as an ordinary
quantum mechanics with a non-local potential [12].

To illustrate the particularity of the linear energy dependence, we can look at one of the
consequences of the closure relation. Consider the function

�(�r) =
∑

i

ci�i(�r). (8)

We have obviously

ci =
∫

�∗
i (�r ′)[1 − ϕii(�r ′)]�(�r ′) d�r ′. (9)

Inserting (9) in (8) and inverting the sum and the integral yields

�(�r) =
∫

d�r ′ �(�r ′)
∑

i

�∗
i (�r ′)[1 − ϕii(�r ′)]�i(�r). (10)

This equation is satisfied if we consider∑
i

�∗(�r ′)[1 − ϕii(�r ′)]�i(�r) = δ(�r − �r ′). (11)

Suppose that (11) is actually a delta-function; then

�j(�r) =
∫

�j(�r ′)
∑

i

�i(�r)[1 − ϕii(�r ′)]�∗
i (�r) d�r ′

=
∑

i

∫
�j(�r ′)[1 − ϕij (�r ′) − (ϕii(�r ′) − ϕij (�r ′))]�∗

i (�r ′) d�r ′

= �j(�r) −
∑

i

�i(�r)
∫

�j(�r ′)[ϕii(�r ′) − ϕij (�r ′)]�∗
i (�r ′) d�r ′. (12)

The equality is satisfied if the ϕij are independent of the state, which is obviously the case for
a linear energy dependence.

3. The power-law potentials

To get an insight into the way the Schrödinger equation is handled in the case of energy-
dependent potentials, we study in this section the solutions of a few examples with radial
shapes corresponding to power-law potentials:

V (r) = sign(α)λ rα.

Here, λ is the strength (coupling) constant. Spherical symmetry is assumed.
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Consider the wave equation in the three-dimensional space (h̄ = m = 1):[− 1
2	 + V0(r) + EV1(r)

]
�(�r) = E�(�r). (13)

The linear momentum is given by [12, 16]

�P = −i �∇ + i
�∇V1(r)

2[1 − V1(r)]
. (14)

In the case of spherical symmetry, the second contribution is proportional to �r . Thus, it does
not contribute to the vectorial product �r × �P , and the angular momentum operator �L takes its
usual expression.

Under spherical symmetry, the usual variable separation leads to

�n
m(�r) = �n
(r)

r
Y
m(θ, ϕ). (15)

Here, Y
m(θ, ϕ) are the spherical harmonics. The remaining equation to be solved reads

−1

2
�′′

n
(r) +

[

(
 + 1)

2r2
+ V (r, En
)

]
�n
(r) = En
�n
(r). (16)

The searched solutions are subject to the usual boundary conditions, namely �n
(0) =
�n
(∞) = 0, together with the square integrability of �n
m(�r). The potentials we consider
are of the form

V (r, E) = V0(r)(1 + γE). (17)

The positivity of the density imposes

1 − γV0(r) > 0. (18)

Note that for these potentials, it is the coupling constant which is energy dependent. Thus,
if V0(r) admits analytical solutions, the solutions have the same analytical expressions in the
energy-dependent case. The difference is that the basic parameter appearing in the eigenvalues
is linked to the coupling constant through an energy-dependent relation. Consequently, the
eigenvalue equations are no longer linear, but of higher order. In this respect, it is very
important to verify that a single root is attached to each state. The other roots are rejected on
the ground of the square integrability of the wavefunctions.

As far as potentials admitting analytical solutions are concerned three examples are
sketched.

3.1. α = −1 (Coulomb)

This potential is given by

V (r, En
) = λ

r
(1 + γEn
), with λ < 0. (19)

The potential being negative, condition (18) requires γ > 0. The reduced radial wavefunctions
take the usual form

�n
(r) = Cn
r

+1 e−an
r/2Pn
(r), (20)

with Pn
(r) being the polynomial form of the confluent hyper-geometric functions. As can be
verified, the quantization condition implies

an
 = −2λ
1 + γEn


n + 

, n = 1, 2, 3, . . . , (21)

4



J. Phys. A: Math. Theor. 43 (2010) 125301 R Yekken and R J Lombard

Figure 1. Behavior of the spectrum of the Coulomb potential V(r, E) for γ = 0.5 compared to
(γ = 0) for λ = −1.

while we have

En
 = − 1
8a2

n
. (22)

Consequently, the eigenvalues are the solutions of a second-order equation with two roots

E±
n
 = 1

λ2γ 2
[−(n + 
)2 − γ λ2 ± (n + 
)

√
(n + 
)2 + 2γ λ2]. (23)

It is easy to show that E−
n
 leads to the negative values of an
, which is unacceptable. Thus,

only E+
n
 are retained. From now on we shall omit to specify the + exponent.

The eigenvalues E1
 are displayed in figure 1 up to 
 = 10, for λ = −1, γ = 0 and
γ = 0.5. It shows the energy dependence to affect essentially the lowest levels. Indeed, in the
limit of large quantum numbers, we get

lim
n
→∞

En
 ≈ − λ2

2(n + 
)2
, (24)

which is the usual expression.

3.2. α = 2 (harmonic oscillator)

Here, we have

V (r, En
) = λr2(1 + γEn
). (25)

Since λ > 0, the positivity of the density requires γ � 0. The reduced radial wavefunctions
take the form

�n
(r) = Cn
r

+1e−an
r

2/2Pn
(r). (26)

As for the preceding example, two conditions link the eigenvalues and an
:

2
 − 1

4
− En


2an


= −n with n = 1, 2, 3 . . . (27)
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Figure 2. Behavior of the spectrum of the harmonic oscillator potential V(r, E) for γ = −0.1
compared to (γ = 0) for λ = 0.5.

and

En
 = an


2
(4n + 2
 − 1). (28)

As a result, the eigenvalues are the roots of a second-order equation:

E±
n
 = γ λ

4
(4n + 2
 − 1)2 ± 4n + 2
 − 1

4

√
[γ λ(4n + 2
 − 1)]2 + 8λ. (29)

Recalling that λ > 0 and γ � 0, only E+
n
 is positive definite together with its corresponding

an
. The other root leads to the negative values of an
 and thus is to be rejected. The +
exponent will be omitted in what follows.

The interesting feature of the spectrum is the saturation effect, already mentioned by
Formanek et al for the (D = 1)-dimensional case. As the quantum numbers increase, the
eigenvalues reach an upper limit. From En
 of (29), it is easy to show that

lim
n
→∞

En
 = 1

|γ | . (30)

An illustrative example is displayed in figure 2, where the spectrum of the {1
} states is plotted
up to 
 = 20 for λ = 0.5, γ = 0 and −0.1.

3.3. α = 1 (linear potential)

This potential is given by

V (r, En
) = λ(1 + γEn
)r, λ > 0. (31)

As for all confining potentials, the condition on the density imposes γ < 0. For the 
 = 0
states, the linear potential has analytical solutions which are well known. For the sake of
clarity, we recall that introducing

2λ(1 + γEns) = 1

ρ3
ns

, 2Ens = δns

ρ2
ns

, (32)
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together with the change of variable

z = r

ρns

− δns (33)

transforms the radial Schrödinger equation into the Airy differential equation

�′′
ns(z) − z�ns(z) = 0. (34)

It is solved with �ns(−δns) = �ns(∞) = 0 as boundary conditions. The solutions are
expressed by the Airy function Ai(z) [17]. The zeros of the Airy function are tabulated, and
the boundary condition at z = −δns yields the eigenvalues by means of a cubic equation,
namely

E3
ns − λ2δ3

ns

2
(1 + γEns)

2 = 0. (35)

This equation has a single positive root, the two others being complex conjugated and thus
have to be rejected.

It is interesting to note that the asymptotic limit of δns as n get large is given by

δns ≈ −
(

3π

2
n

)2/3

, n � 10. (36)

By inserting this value in equation (35), we readily see that as n → ∞ we obtain the limit

lim
n→∞ Ens = 1

|γ | . (37)

3.4. Numerical code

The use of a numerical code has been made to get the eigenvalues of two power-law potentials:
α = 1/2 and α = 1, 
 �= 0. It prompts us to add a remark concerning the way the Schrödinger
equation is solved numerically. The code we are using relies on the behavior of r0, the
first zero of the reduced wavefunction beyond the origin (remember the boundary conditions
�(0) = �(∞) = 0). The quantity r0 must be a monotonically decreasing function of E.
Considering two solutions of equation (16) for E + dE and E, algebraic manipulations lead to

dr0

dE
= −1

�′2(r0)

[∫ r0

0
�2

E(r) dr − γ

∫ r0

0
V (r)�2

E(r) dr

]
. (38)

The condition imposed on γ to ensure the density to be positive definite are precisely the
ones making this second term the same sign as the first one. In this case, the quantity in the
square parenthesis is positive definite, and r0 is a monotonically decreasing function of E.
Consequently, for power-law potentials, our code can be used by simply replacing V (r) by
V (r)(1 + γE). However, for more general potential shapes, one may encounter difficulties
with this method.

3.5. Saturation of the spectrum

The results obtained for the harmonic oscillator and the linear potential clearly show a
saturation effect on the spectrum. The eigenvalues reach an upper bound as the quantum
numbers increase. Indeed, such a behavior can be expected for any confining potential
dependent on energy. The argument is the following. Consider the potential

V (r, E) = λf (r)(1 + γE), (39)

7



J. Phys. A: Math. Theor. 43 (2010) 125301 R Yekken and R J Lombard

Figure 3. Behavior of the spectrum of the {1, 
} states for three different confining shapes of the
potential. The upper bound of the spectrum 1

|γ | being the same for all three potentials, it shows
that the upper limit is reached more rapidly as the power α of rα increases.

Figure 4. The same comment as figure 3 for the Ens spectra.

where λ, f (r) and E are positive definite quantities. Remember as well that for such potentials,
the condition of positivity of the density (1) implies γ � 0. If an effective coupling constant
is defined by

λeff = λ(1 + γEn
), (40)

the largest eigenvalue which can be reached without changing the nature of the confining
potential is precisely 1/|γ |.

The rapidity of the saturation depends both on γ and on the shape of the potential
(here α). For the sake of illustration, eigenvalues are displayed as a function of quantum
numbers in figures 3 and 4.
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In figures 3 and 4, the {1
} and the {n0} spectra are displayed for α = 0.5, 1.0 and 2.0,
respectively. Here, λ = 1.0 and γ = −1. The saturation effect is well underlined: the curves
describing the evolution of the eigenvalues with 
 or n clearly become flatter as these quantum
numbers increase. The way the spectrum reaches its upper limit depends strongly on α, being
the more pronounced as α is larger.

It is easy to verify that the saturation energy is reached more rapidly as |γ | becomes larger.
This can be inferred from the 1/|γ | limit. Thus, for large values of |γ |, the whole spectrum is
practically degenerated.

4. The equivalent local potential

The equivalent local potentials have been studied in connection with the scattering states. In
this context, equivalent local potentials are defined as giving the same asymptotic phase shifts
for elastic scattering [18, 19]. To our knowledge, the case for bound states has not been
investigated at a formal level. Consequently, this section is devoted to the following question:
assuming the spectrum of a non-local potential to be known, is it always possible to find an
equivalent local potential producing the same spectrum?

Whereas this is intuitively achievable for a finite set of eigenvalues, no proof exists that it
can be extended to the whole spectrum.

The fact that the energy-dependent potentials we have studied reduce to non-local
potentials obeying ordinary quantum mechanics rules provides us with a way of tackling
this question. Moreover, by considering the Coulomb potential and the harmonic oscillator,
we rely on exact (analytical) solutions for an infinite ensemble of states. These starting points
are particularly convenient to answer the question of the existence of the local equivalent
potential, or at least to show different types of situations. For this purpose, use is made of the
method for the inverse problem in the case of discrete states developed in a preceding paper
[20]. In particular, conditions for a unique answer have been given in [20, 21].

4.1. The method

Here, the method developed in [20] is briefly recalled. Suppose the eigenvalues to be known,
the first step consists in connecting the moments of the ground state density to the excitation
energies of the yrast levels (the lowest level of each angular momentum). It yields the following
recurrent relationships:

〈r2
〉 = 1

2

(2
 + 1)

〈r2
−2〉
E1
 − E1s

f (
) (41)

The factors f (
) are not known a priori. They can be approximated, and then improved by
an iterative procedure. For the Coulomb potential and the harmonic oscillator, Bertlmann and
Martin have derived an exact expression for f (
) [22]. It will be used here as a first guess. It
reads

f (
) =
[

1 − 


2(
 + 1)
C(
)

]
, (42)

with

C(
) =
[
E(
+1)s + E1s − 2E1


E(
+1)s − E1s

]2

. (43)

By means of equations (42), (43) and (41) the moments of the ground state density are
estimated.

9
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The problem of reconstructing a function from its moments has a long history. In general
it has a unique solution if and only if all the moments (integer and non-integer) are known. On
the other hand, if only integer moments are fixed, Stieltjes has shown that the solution is by
far non-unique [23]. We are precisely facing such a situation, since equations (43) yield only
the even moments of the ground state density. However, in the present case, we are looking
for densities belonging to the class of square functions |�|2, where � is the solution of the
Schrödinger equation for a bound state. In this case, it is sufficient to argue that the density
must be a positive definite function decreasing monotonically beyond a given radius. These
restrictions ensure the uniqueness of the solution.

Besides the uniqueness, the question remains of how to recover in practice a function from
its moments. In the method we have developed, use is made of the formal series expansion of
the Fourier transform of the density:

F(q) = 1

2π

∫
ei�q�rρ(r)d3r =

∑



(−)

〈r2
〉

(2
 + 1)!
q2
. (44)

The expansion is clearly valid only inside the convergence radius. The use of Padé
approximants allows us to describe F(q) beyond the convergence radius. We remind the
reader that a Padé approximant is a rational fraction P [N,D], where N and D are the degree of
the numerator and the denominator, respectively. Its coefficients are fitted on the first (N + D)

terms of the series expansion to be extended [24].
Once F(q) is determined, the ground state density is obtained by inverting the Fourier

transform (44). The ground state wavefunction is the square root of the density. The
corresponding potential is derived by inverting the Schrödinger equation.

By solving the Schrödinger equation with this potential, the eigenvalues are checked
against the original spectrum. This is the essential test. It is also used to calculate new
approximated f (
) factors, and to start an iterative procedure. The iterations are stopped once
the desired accuracy is reached for the eigenvalues. At a certain step, it may be advantageous
to leave the Padé approximants and to work with parametric expressions for the potential.

4.2. The Coulomb potential

The eigenvalues are given by equation (23). They are used to estimate the ground state density
moments. The results up to 
 = 10 are displayed in table 1, for both f (
) = 1 and f (
) given
by equations (42) and (43). Following the procedure stated above, several Padé approximants
have been considered. Out of this sample, two approximants, P[2,14] and P[4,18], have been
selected as good representatives of what can be achieved in this way. The ground state densities
and the corresponding potentials have been derived. The potentials are displayed in figure 5,
and compared to the −1/r potential. Differences appear essentially at small distances.

The validity of the derived potentials is tested by inserting them in the Schrödinger
equation and calculating the eigenvalues. At large distances, these potentials have been
extrapolated by −1/r . The two approximants yield equivalent results. The values obtained
from P [4, 18] are listed in table 2, and compared to the exact values. The agreement is
satisfactory, the largest deviation being of 4%.

To improve the situation, these first-order potentials can be used to calculate better
correction factors f (
), and start an iterative procedure. On the other hand, improving the
results requires also to enlarge the degree (N + D) of the approximants. However, increasing
the degree increases the difficulty of the numerical handling, which becomes rapidly over-
complicated. For this reason, at some stage, it is more convenient to play with a parametrized
form suggested by the first approximants.

10
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Figure 5. V(r, E)—Coulomb potential: the equivalent potentials V (0)(r) deduced from the
approximants P [2, 14] and P [4, 18] are compared to the Coulomb potential.

Table 1. V(r, E)—Coulomb potential: values of the ground state moments 〈r2
〉BM , 〈r2
〉(0) and
〈r2
〉P for (λ = −1, γ = 0.5) up to 
 = 10.


 〈r2
〉BM 〈r2
〉(0) 〈r2
〉P

1 6.4742 × 100 4.8556 × 100 5.0307 × 100

2 1.1144 × 102 5.5720 × 101 6.3584 × 101

3 3.7404 × 103 1.1689 × 103 1.4780 × 103

4 2.0810 × 105 3.9018 × 104 5.3596 × 104

5 1.7371 × 107 1.8999 × 106 2.7380 × 106

6 2.0341 × 109 1.2713 × 108 1.8376 × 108

7 3.1840 × 1011 1.1194 × 1010 1.5393 × 1010

8 6.4246 × 1013 1.2548 × 1012 1.5467 × 1012

9 1.6243 × 1016 1.7449 × 1014 1.8056 × 1014

10 5.0306 × 1018 2.9477 × 1016 2.3833 × 1016

After few trials, the following expression has been chosen:

Vp(r) = −V0(r)

rα(r)
, (45)

with

V0(r) = b + (1 − b) tanh(kr)p; α(r) = α0 +
(1 − α0)r

a + r
. (46)

The adopted parameter values are b = 0.831, k = 0.013, p = 1.4, α0 = 0.87 and a = 11.
This form is taken up to r = 50. Beyond this value, the parametric potential is extrapolated
by −1/r .

The corresponding potential is displayed in figure 6, and is compared with the VP [2,14](r)

and −1/r potentials. Near the origin, Vp behaves like − 0.831
r0.875 , which is somewhat less diverging

than the Coulomb potential. The comparison with VP [2,14](r) underlines one of the difficulties

11
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Figure 6. V(r, E)—Coulomb potential: the local equivalent parametric potential is compared to
VP [2,14](r) and to the Coulomb potential.

Table 2. V(r, E)—Coulomb potential: the first ten eigenvalues E1
 of the {1, 
} states in the
case of (λ = −1, γ = 0.5). The exact values are compared to the results obtained with the
V

(0)
P [2,14] potential, the parametric potential VP (r) and the parametric potential extrapolated by

V (r) = − 1
r
, r � 50 (V ex

P (r)). The same is done for the ground state moments 〈r2〉 and 〈r4〉.

E1



 Exact V
(0)

P [2,14] VP V ex
P

0 −0.3431 −0.3432 −0.3431 −0.3431
1 −0.1115 −0.1112 −0.1111 −0.1111
2 −0.0527 −0.0549 −0.0530 −0.0530
3 −0.0303 −0.0312 −0.0302 −0.0302
4 −0.0196 −0.0200 −0.0194 −0.0194
5 −0.0137 −0.0139 −0.0136 −0.0136
6 −0.0101 −0.0102 −0.0101 −0.0101
7 −0.0078 −0.0078 −0.0079 −0.0078
8 −0.0061 −0.0062 −0.0064 −0.0062
9 −0.0050 −0.0050 −0.0053 −0.0050

10 −0.0041 −0.0041 −0.0044 −0.0041

〈r2〉 3.7312 5.0771 5.1757 5.1757

〈r4〉 38.443 62.351 64.062 64.062

faced with the Padé approximants: the determination of the potential near the origin requires a
huge and accurate numerical work. In the present work, it affects essentially the 
 = 0 states,
and Vp constitutes a sufficient approximation for our purpose.

The eigenvalues are listed in table 2. The agreement with the exact values is satisfactory.
The slight over-binding found for 
 � 7 is due to the fact that Vp is meeting the − 1

r
behavior

too slowly. This can be remedy by extrapolating VP (r) = − 1
r

for r � 50. The corresponding
eigenvalues are listed in table 2 under V ex

p .
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Figure 7. V(r, E)—harmonic oscillator: the local equivalent potential V (0)(r) deduced from the
approximant P [6, 16].

In view of these results, taking into account that at large distances the potential must meet
a −1/r shape, we conclude that a local equivalent potential can be found, which reproduces
the whole spectrum. The degree of precision is essentially a question of numerical analysis.

This is not surprising, in a sense, because the non-locality of the original potential affects
merely the low lying states. Thus, the problem is not so different from the fit of a spectrum
over a finite domain of eigenvalues.

It is interesting to note that, if the spectrum is well reproduced, the ground state
wavefunction presents large differences. This is reflected in the values of 〈r2〉 and 〈r4〉
quoted in table 2. The extension of the wavefunction of the local equivalent potential is much
larger than the one of the original wavefunction.

4.3. The harmonic oscillator case

The situation is radically different in the case of the harmonic oscillator, and probably for all
confining potentials.

The eigenvalues are given by the positive roots of equation (29). They are used to obtain
the first estimate of f (
) and the ground state density moments. They are displayed up to

 = 10 in table 3. These moments are considered to build Padé approximants to F(q).
Among various possibilities, we have retained the P [6, 16] fraction, which illustrates the
situation very well. The corresponding potential is displayed in figure 7. Close to the origin,
the shape reminds us of the harmonic oscillator but as r increases, the slope bends and the
shape looks logarithmic. Such a behavior is actually expected, since the saturation of the
spectrum implies the potential to tend to a constant.

The spectrum has been calculated by extrapolating this potential beyond r = 7 by two
expressions:

V1(r) = 1.3916 log (0.1 + r); V2(r) = rα(r) with α(r) = 0.223 − 0.15e−0.3r .

(47)

The results are displayed in table 4, and compared to the exact values. The agreement is
no better than a few percent but it is sufficient to underline the main problem. The local

13
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Table 3. V(r, E)—Harmonic oscillator: values of the ground state moments 〈r2
〉BM , 〈r2
〉(0) and
〈r2
〉P for (λ = 0.5, γ = −0.25) up to 
 = 10.


 〈r2
〉BM 〈r2
〉(0) 〈r2
〉P

1 2.5291 × 100 2.5174 × 100 2.4388 × 100

2 1.2111 × 101 1.1768 × 101 1.1385 × 101

3 9.1687 × 101 8.4171 × 101 8.2837 × 101

4 1.0013 × 103 8.3327 × 102 8.4974 × 102

5 1.4892 × 104 1.0741 × 104 1.2059 × 104

6 2.8977 × 105 1.7309 × 105 3.3170 × 105

7 7.1557 × 106 3.3896 × 106 3.3893 × 107

8 2.1896 × 108 7.8987 × 107 6.6277 × 109

9 8.1417 × 109 2.1555 × 109 1.4333 × 1012

10 3.6198 × 1011 6.8021 × 1010 3.1388 × 1014

Table 4. V(r, E)—harmonic oscillator: the first ten eigenvalues E1
 of the {1, 
} states in the case
of (λ = 0.5, γ = −0.25). The exact values are compared to the results obtained with V

(0)
1 (r) and

V
(0)
2 (r) as well as with V (1)(r). The same is done for the ground state moments 〈r2〉 and 〈r4〉.

E1
 E
(0)

1
 E
(1)

1



 Exact V
(0)

1 V
(0)

2 V (1)

0 1.2449 1.2469 1.2469 1.2467
1 1.8380 1.8316 1.8319 1.8359
2 2.2891 2.2807 2.2840 2.2981
3 2.6318 2.6368 2.6535 2.6532
4 2.8932 2.8963 2.9291 2.9155
5 3.0938 3.0922 3.0998 3.0931
6 3.2492 3.2645 3.2207 3.2190
7 3.3709 3.4256 3.3228 3.3225
8 3.4672 3.5763 3.4136 3.4135
9 3.5442 3.7158 3.4957 3.4956

10 3.6066 3.8438 3.5703 3.5703

〈r2〉 2.0294 2.5222 2.5214 2.5064

〈r4〉 6.7820 11.825 11.809 11.442

equivalent potential behaves at large distances as a confining potential. Thus, its eigenvalues
are constantly increasing. The saturation of the spectrum cannot be reached in this way.

The procedure can be iterated by calculating improved f (
) from these first two potentials.
However, the improvement of the fit is not so spectacular. Thus, it will not be discussed further.

There is, however, one way to reproduce the energy differences of the discrete spectrum.
This can be achieved by shifting the whole spectrum by − 1

|γ | . The problem thus resembles
the Coulomb potential case, with the saturation energy shifted to zero.

Based on the experienced gained with the Coulomb potential, we have adopted the
following parametrized expression:

Vp(r) = −V0(r)

rα(r)
, (48)

14
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Table 5. V(r, E)—harmonic oscillator: the first ten eigenvalues E1
 of the {1, 
|} states in the case
of (λ = 0.5, γ = −0.25). Exact values are compared to the results obtained with the parametric
potential VP (r) and the parametric potential extrapolated by V (r) = − 1

r
, r � 10: (V ex

P (r)). The
same is done for the ground state moments 〈r2〉 and 〈r4〉.

E′
1



 Vexact VP V ex
P

0 −2.7551 −2.7577 −2.7577
1 −2.1620 −2.1596 −2.1596
2 −1.7109 −1.7360 −1.7360
3 −1.3682 −1.4045 −1.4045
4 −1.1068 −1.1358 −1.1359
5 −0.9062 −0.9153 −0.9161
6 −0.7508 −0.7333 −0.7403
7 −0.6291 −0.5832 −0.6170
8 −0.5328 −0.4594 −0.5340
9 −0.4558 −0.3577 −0.4645

10 −0.3934 −0.2746 −0.4012

〈r2〉 2.0294 2.4388 2.4388

〈r4〉 6.7820 11.387 11.386

with

V0(r) = 3.37 +
0.4

(1 + r2)2
; α(r) = 0.3 + 0.12 log(1 + 0.25r2). (49)

The corresponding eigenvalues are displayed in table 5, and compared to the exact values.
The agreement is quite satisfactory. It means that if the energy differences between levels

are the quantities to be reproduced, then this task is achievable for the whole spectrum as for
the Coulomb potential.

However, it is clear that the potential (48) tends to zero as r → ∞, and thus it admits
states in the continuum, which are absent in the original potential. Moreover, the ground state
wavefunction is now characteristic of the Coulomb case, namely it has an exponential decay.
This contrasts with wavefunctions of confining potentials. This is reflected in the ground state
moments. As shown in table 3, the values of 〈r2
〉p are sensibly larger than 〈r2
〉BM beyond

 = 6.

In conclusion, energy-dependent confining potentials have spectra which cannot be
reproduced by a local equivalent potential over the entire energy domain. This example
puts limits on the possibility of finding local equivalent potential.

Note that the calculated values of 〈r2〉 and 〈r4〉 in the ground state show the extension
of the ground state wavefunction of the local equivalent potential to be larger than that of the
original potential. In this respect, the situation is similar to the one found with the Coulomb
potential. In fact, it should be the same for any non-local potential, as shown be the following
arguments.

The recurrence relationships (41) are actually derived from some rules (see [25]). Non-
local potentials bring corrections to the sum rules, with respect to the local potential, which
diminish the sum rule values. Consequently, the ground state moments of a non-local potential
are expected to be smaller than those of the local equivalent potential.
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5. Conclusions

The present work is devoted to the study of energy-dependent potentials. As stated in the
introduction, they constitute a way to include nonlinear effects in the Schrödinger equation.
A linear energy dependence has been chosen, since it leads to a coherent theory.

To become acquainted with the handling of nonlinear effects, the solutions of the
Schrödinger equation have been given for power-law potentials with α = −1, 1/2, 1 and
2. The radial shape is simply multiplied by (1 + γEn
). The coherence of the theory requires
γ to be positive for attractive potentials and negative for confining potentials, respectively.
Formally, the solutions resemble that of the ordinary cases (γ = 0) except that the equations
determining the eigenvalues are not linear. In such a case, it is important to verify that only a
single root has to be retained.

In the case of numerical solutions of the Schrödinger equation, the very same conditions
ensuring the positivity of the density allows the use of the codes used in the case of local
potentials. It amounts to replace V (r) by V (r)(1 + γE) in the codes. At the same time, it
proves that the calculated wavefunction corresponds to a unique eigenvalue.

In general, the energy dependence results in the compression of the spectrum. For the
Coulomb potential (α = −1), the ground state is less bound as γ increases. Confining
potentials are subject to a saturation effect: as the quantum numbers increase, the eigenvalues
reach an upper bound.

Finally, since the wave equation with a linear energy dependence in the potential can be
reduced to an ordinary Schrödinger equation with a non-local potential, it gives an opportunity
to discuss the question of the local equivalent potential. Moreover, the fact that complete
analytical solutions exist for the Coulomb potential and the harmonic oscillator provides
us with the necessary ingredients to solve the so-called inverse problem from the discrete
spectrum. Here, we apply a method developed in a previous work [20].

A local equivalent potential can be found, which reproduces the whole spectrum in the
case of the Coulomb potential. The situation is different for the harmonic oscillator. Confining
potentials undergo a saturation effect, which can be reproduced only by a shift of the saturation
energy to zero. But at the same time, it introduces continuum states, not present in the original
potential. Thus, strictly speaking, it is not possible in this case to find a local equivalent
potential reproducing the whole spectrum.

Finally, we note that the moments of the ground state density are larger for the local
equivalent potential than for the original non-local potential. We conjecture this to be a
general consequence of the non-locality of the potential. Our argument is based on the fact
that the connections between the ground state moments and the spectrum are derived from
sum rules, and that the sum rule values are smaller for non-local potentials.
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